Typed Graph Models for Learning Latent Attributes from Names
نویسندگان
چکیده
This paper presents an original approach to semi-supervised learning of personal name ethnicity from typed graphs of morphophonemic features and first/last-name co-occurrence statistics. We frame this as a general solution to an inference problem over typed graphs where the edges represent labeled relations between features that are parameterized by the edge types. We propose a framework for parameter estimation on different constructions of typed graphs for this problem using a gradient-free optimization method based on grid search. Results on both in-domain and out-of-domain data show significant gains over 30% accuracy improvement using the techniques presented in the paper.
منابع مشابه
Hierarchical Bayesian Models for Latent Attribute Detection in Social Media
We present several novel minimally-supervised models for detecting latent attributes of social media users, with a focus on ethnicity and gender. Previous work on ethnicity detection has used coarse-grained widely separated classes of ethnicity and assumed the existence of large amounts of training data such as the US census, simplifying the problem. Instead, we examine content generated by use...
متن کاملMulti-Conditional Learning for Joint Probability Models with Latent Variables
We introduce Multi-Conditional Learning, a framework for optimizing graphical models based not on joint likelihood, or on conditional likelihood, but based on a product of several marginal conditional likelihoods each relying on common sets of parameters from an underlying joint model and predicting different subsets of variables conditioned on other subsets. When applied to undirected models w...
متن کاملLink Prediction Based on Graph Neural Networks
Traditional methods for link prediction can be categorized into three main types: graph structure feature-based, latent feature-based, and explicit feature-based. Graph structure feature methods leverage some handcrafted node proximity scores, e.g., common neighbors, to estimate the likelihood of links. Latent feature methods rely on factorizing networks’ matrix representations to learn an embe...
متن کاملDiscovering Multi-relational Latent Attributes by Visual Similarity Networks
The key problems in visual object classification are: learning discriminative feature to distinguish between two or more visually similar categories ( e.g. dogs and cats), modeling the variation of visual appearance within instances of the same class (e.g. Dalmatian and Chihuahua in the same category of dogs), and tolerate imaging distortion (3D pose). These account to within and between class ...
متن کاملApplication of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data
This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values. Seismic surveying was performed next on these models. F...
متن کامل